

Synergies for a wave-wind energy concept

"Bringing together waves and wind"

MSc. Carlos Pérez Collazo

MSc. Morten M. Jacobsen

Dr. Hanna Buckland

Dr. Julia Fernandez-Chozas

Contents

- 1. Synergies
- 2. Challenges
- 3. Case study
- 4. Combined alternatives
- 5. Conclusions

Synergies I

- An increased energy yield, and predictability;
- A smoothing and highly available power output;

Synergies II

- Shared cost (e.g. grid, O&M, substructure, logistics);
- Reduced environmental impacts;

Shadow effects

4.784

x 10⁶

Risks & challenges

Risks	Challenges		
 Technology readiness of wave energy Uncertainty of mooring lines Lack of experience Impact risk Project insurance 	 Research and development in: new materials, concepts of mooring lines, anticollision systems, etc. Demonstration of the combined wave-wind technology 		

Case study: Problem definition

Case study: Costs

Breakdown of Life-Cycle Costs of Offshore Wind Farms in Shallow Water

(NREL)

Case study: WECs

Wave Energy Converter comparison

WEC Name	WEC "Main active dimension" [m]	Capture Width [%]	Shielding potential coefficient (regular operation) [-]	Shielding potential coefficient (storm operation) [-]
Wave Dragon	~ 260	0.23	0.60	0.50
WaveBob	15	0.42	0.30	0.20
WaveStar	100	0.40	0.60	0.00

First solution

Place WECs in between first row and column of Wind turbines

Second solution

Place bottom-fixed hybrid wave-wind turbines at the perimeter

Third solution

Place bottom-fixed hybrid wave-wind turbines, remove turbines, add shielding WECs, and small WECs in between

Results

	Case Study Solution	1	2	3
Initial Savings	Cable	0,1	0,1	0,1
	Permits	0,05	0,05	0,05
	Support Structure	0	0,05	0,03
Lifetime Savings	O&M	0,2	0,2	0,2
	O&M Weather Window	0,02	0,01	0,03
	Lifespan of Turbines	0,02	0,02	0,02
Shared Costs Total		0,39	0,43	0,43
Loss of WEC Power	Shielding/Turbulence	0	0	0,05
	Wave Climate	0,05	0,05	0,05
Loss Total		0,05	0,05	0,1
Total Savings		0,34	0,38	0,33

• Risk Factor: 1<2<3

• R&D Needed: 1<2≈3

Conclusions and future work

- There are strong synergies between offshore wind and wave energy technologies makes a real alternative to combine them;
- There are WEC technologies susceptible for combining considering their actual development status;
- 3 case study have been analysed and it has been found that the third option is the most convenient; and
- Future research is needed to understand in deep this proposals, as well as to face the identified challenges.

Acknowledges

This work has been founded through a collaborative (INORE & IEA-OES) International Collaborative Incentive Scholarship (ICIS) grant.

Furthermore, we would like to thank also to:

- John Vindhal Kringelum (Dong Energy)
- INORE

